C	Questi	ion	er	Mark	Guidance
1	(a)		2NaOH + Cl ₂ → NaClO + NaCl + H ₂ O \checkmark	1	ALLOW NaOCI
					IGNORE state symbols
	(b)	(i)	Sodium chlorate(V) ✓	1	ALLOW sodium chlorate V
		.,			DO NOT ALLOW sodium chlorate 5
		(ii)			USE annotations with ticks, crosses, con, ECF, etc for this part.
			Cl in NaClO ₃ is (+)5 AND Cl in NaClO ₄ is (+)7 AND Cl in NaCl is $-1 \checkmark$	1	ALLOW 5+, 7+ 1– Look for oxidation numbers seen above equation. DO NOT ALLOW CI [−] in NaCl
			Chlorine has been both oxidised and reduced OR The oxidation number of chlorine has increased AND decreased ✓	1	The second and third marking points must refer to chlorine ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given ALLOW CI for 'chlorine' DO NOT ALLOW CI ₂ for 'chlorine'
			Chlorine has been oxidised from (+)5 to (+)7 AND chlorine has been reduced from (+)5 to $-1 \checkmark$ (These points would secure marking points 2 and 3) 4NaClO ₃ \rightarrow 3NaClO ₄ + NaCl $\frac{+5}{-1}$ This diagram gets all 3 marks	1	 ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine IGNORE references to electron loss / gain if correct. DO NOT ALLOW 3rd mark for reference to electron loss/gain If oxidation numbers are correct, ALLOW 1 mark for 'chlorine is oxidised to form NaClO₄' ALLOW 1 mark for 'chlorine is reduced to form NaCl' ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' whether or not chlorine is mentioned
	(c)	(i)	Chlorinated hydrocarbons are carcinogens OR toxic OR Chlorine is toxic OR poisonous ✓	1	ALLOW CH ₃ Cl for 'chlorinated hydrocarbons' IGNORE 'harmful' IGNORE 'carcinogenic' for chlorine
			(Chlorine) kills bacteria OR 'kills germs' 'kills micro-organisms' OR 'makes water safe to drink' OR 'sterilises water' OR 'disinfects' ✓	1	DO NOT ALLOW 'antiseptic' ALLOW 'to make water potable' ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water' IGNORE 'cleans water'

	Ques	tion	er	Mark	Guidance
1	(c)	(ii)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of CH ₃ Cl AND lone pairs correct on Cl ✓ H C C Cl	1	Must be ' <i>dot-and cross'</i> ALLOW different symbol for third 'type' of electron Circles for outer shells not needed IGNORE inner shells Non-bonding electrons of chlorine do not need to be shown as pairs
		(iii)	Tetrahedral OR tetrahedron ✓	1	
	(d)		Add AgNO ₃ (aq) OR Ag ⁺ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag ⁺ (aq) seen in the ionic equation IGNORE references to nitric acid IGNORE references to adding water or dissolving the brine DO NOT ALLOW references to any other additional reagent as well as the silver nitrate for the first mark
			White precipitate ✓	1	White AND precipitate required DO NOT ALLOW hint of any other colour IGNORE 'turns grey' ALLOW solid as alternative for precipitate
			$Ag^+ + CI^- \rightarrow AgCI \checkmark$	1	IGNORE states
			Add dilute NH ₃ and precipitate (completely) dissolves OR disappears \checkmark	1	DO NOT ALLOW conc. NH ₃ DO NOT ALLOW any mention of incomplete dissolving ALLOW (for 4th mark) 'add Cl ₂ (aq)' AND 'no colouration would be seen' OR 'no change' OR 'no reaction'
			Total	13	

G	uesti	ion	Expected Answers	Marks	Additional Guidance
2	(a)			3	Lattice must have at least 2 rows of positive ions If a metal ion is shown (e.g. Na ⁺), it must have the correct charge
			regular arrangement of labelled + ions with some attempt to show electrons ✓		ALLOW for labels: + ions, positive ions, cations If '+' is unlabelled in diagram, award the label for '+' from a statement of 'positive ions' in text below DO NOT ALLOW as label or text positive atom OR protons OR nuclei
			scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can be in text below) ✓		ALLOW e ⁻ OR e as label for electron DO NOT ALLOW ' 'as label for electron
			metallic bond as (electrostatic) attraction between the electrons and the positive ions \checkmark		
	(b)	(i)	4 Na + O ₂ \longrightarrow 2 Na ₂ O OR 2 Na + $\frac{1}{2}$ O ₂ \longrightarrow Na ₂ O \checkmark	1	ALLOW correct multiples including fractions IGNORE state symbols
		(ii)	(electrostatic) attraction between oppositely charged ions✓	1	

Question	Expected Answers	Marks	Additional Guidance
(iii)	$\begin{bmatrix} Na \end{bmatrix}^{+} \begin{bmatrix} \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{bmatrix}^{2-} \begin{bmatrix} Na \end{bmatrix}^{+} \begin{bmatrix} \bullet $	2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons
	Na shown with either 8 or 0 electrons AND O shown with 8 electrons with 6 crosses and 2 dots (or vice versa) \checkmark Correct charges on both ions \checkmark		ALLOW: $2[Na^+] 2[Na]^+ [Na^+]_2$ (brackets not required) DO NOT ALLOW $[Na_2]^{2+} / [Na_2]^+ / [2Na]^{2+}$ DO NOT ALLOW : $[Na_2]^{2+} [Na_2]^+ [2Na]^{2+} [Na]_2^+$
(c)		5	Throughout this question, 'conducts' and 'carries charge' are treated as equivalent terms.
	sodium is a (good) conductor because it has mobile electrons OR delocalised electrons OR electrons can move ✓		DO NOT ALLOW 'free electrons' for mobile electrons
	sodium oxide does not conduct as a solid \checkmark sodium oxide conducts when it is a liquid \checkmark		ALLOW poor conductor OR bad conductor 'Sodium oxide only conducts when liquid' is insufficient to award 'solid conductivity' mark
	ions cannot move in a solid \checkmark		ALLOW ions are fixed in place IGNORE electrons IGNORE charge carriers
	ions can move OR are mobile when liquid ✓		IGNORE 'delocalised ions' or 'free ions' for mobile ions Any mention of electrons moving is a CON
	Total	12	

Q	uestion		6	er	Marks	Guidance
3	(a)	solid	melting point / ºC	type of lattice	2	
		К	6			
		KBr		giant ionic ✓		giant AND ionic required
		H ₂ O		simple molecular \checkmark		simple AND molecular required ALLOW simple covalent
	(b)	Particle mark	1: tatic attraction bet	woon)	6	Use annotations with ticks, crosses, ECF etc for this part
			cations AND e^- / el			ALLOW labels from diagrams if not seen in text
		Particle mark		etween) oppositely OR		ALLOW K^+ and Br^- for 'oppositely charged ions'
			negatively charge			DO NOT ALLOW 'atoms' in KBr
		positive ions a	and electrons bonding OR KBr h	s attraction between as attraction between		IGNORE 'metallic lattice' for metallic bonding' AND 'ionic lattice' for 'ionic bonding' DO NOT ALLOW , for forces mark, incorrect forces for K and KBr, such as covalent, van der Waals' seen anywhere in the response
						IGNORE references to van der Waals' forces in water
		In H₂O, Forces mark: hydrogen bon Particles mark	-			ALLOW 'intermolecular' OR 'molecular' for particles mark <i>Quality of Written Communication</i> : 'molecules' OR 'intermolecular' OR 'molecular' spelt correctly once and used in context for the fifth marking point
		(Between) mo				The order of all three substances OR bonding must be referred to for this mark
		OR	gth of forces: KBr			ALLOW responses which use comparatives such as strong and extremely strong to differentiate strength of forces ALLOW answers that inform KBr > K > H ₂ O IGNORING
		ionic bonding	> metallic bonding	> hydrogen bonding ✓		incorrect forces used above

Question	er	Marks	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 72(.0) (cm ³) award 3 marks amount of K = 0.2346 / 39.1 OR = 6.(00) × 10 ⁻³ OR 0.006(00) mol \checkmark	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below
	amount of H ₂ = (mol of K) / 2 OR = $3.(00) \times 10^{-3}$ OR 0.003(00) mol \checkmark		ALLOW mol of K x 0.5 correctly calculated for 2nd mark
	Volume of gas = (mol of H ₂) × 24000 OR = 72(.0) (cm ³) \checkmark		 ALLOW mol of H₂ x 24000 correctly calculated for 3rd mark ALLOW 144 (cm³) from 0.006 x 24000 for two marks ALLOW 0.072 from 0.003 x 24 for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
	Total	11	

C	luest	ion	Answer	Mark	Guidance
4	(a)		The ability of an atom to attract electrons ✓	2	ALLOW 'attraction of an atom for electrons' ALLOW 'pull' for 'attract' DO NOT ALLOW 'element' for 'atom'
			in a covalent bond \checkmark		ALLOW 'shared pair' or 'bond(ing) pair' for 'covalent bond'
	(b)		δ⁺N–Fδ⁻ AND δ⁻N–Brδ⁺ ✓	1	ALLOW d+ / d- DO NOT ALLOW + / -
	(c)	(i)	octahedral OR octahedron ✓	1	
		(ii)	F B C C C C C C C C	5	Use annotations with ticks, crosses ECF etc. for this part ALLOW diagrams without circles Must be 'dot-and-cross'
			electron pairs repel ✓		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel' ALLOW 'bonds repel'
			NH_3 has one lone pair and three bonding pairs of electrons AND lone pair of electrons repels more than bonding pairs \checkmark		ALLOW 'bonds' for 'bonding pairs' ALLOW 'four pairs' in place of 'one lone pair and three bonding pairs'
			BF_3 has three (bonding) pairs of electrons (which repelequally) \checkmark		The third marking point can be gained from statements seen in fourth or fifth marking points

	Question		ion	er	Mark	Guidance
4	4 ((c)	(iii)	BF₃ is symmetrical ✓ The dipoles cancel out ✓	2	IGNORE 'polar bonds cancel' IGNORE 'charges cancel'
				Total	11	

C	Questi	on	Expected Answers	Marks	Additional Guidance
5	(a)	(i)	(Electrostatic) attraction between oppositely charged ions . ✓	1	IGNORE force IGNORE references to transfer of electrons MUST be ions, not particles
		(ii)	Mg shown with either 8 of 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) ✓	2	Mark charges on ions and electrons independently For first mark , if 8 electrons are shown around the Mg then 'extra electrons' around S must match the symbol chosen for electrons around Mg
			Correct charges on both ions \checkmark		Shell circles not required
			$\begin{bmatrix} 1 \end{bmatrix}^{2+} \begin{bmatrix} 1 \end{bmatrix}^{2-}$		IGNORE inner shell electrons
					Brackets are not required
	(b)	(i)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of the $F_2O \checkmark$ Lone pairs correct on O and both F atoms \checkmark	2	Must be ' <i>dot-and-cross</i> ' circles for outer shells NOT needed IGNORE inner shells
					Non-bonding electrons of O do not need to be shown as pairs Non-bonding electrons of F do not need to be shown as pairs
		(ii)	Predicted bond angle $104-105^{\circ}$. \checkmark	3	ALLOW 103–105 ^o (103 ^o is the actual bond angle)
			There are 2 bonded pairs and 2 lone pairs ✓ Lone pairs repel more than bonded pairs ✓		ALLOW responses equivalent to second marking point. e.g. There are 4 pairs of electrons and 2 of these are lone pairs ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair ALLOW LP repel more if bonded pairs have already been mentioned

Question	Expected Answers	Marks	Additional Guidance
(C) (i	(At least) two NH₃ molecules with correct dipole shown with at least one H with δ ⁺ and one N with δ ⁻ ✓	3	 DO NOT ALLOW first mark for ammonia molecules with incorrect lone pairs DO NOT ALLOW first mark if H₂O, NH₂ or NH is shown
	(Only) one hydrogen bond from N atom on one molecule to a H atom on another molecule ✓		ALLOW hydrogen bond need not be labelled as long as it clear the bond type is different from the covalent N–H bond
			ALLOW a line (i.e. looks like a covalent bond) as long as it is labelled 'hydrogen bond)
	Lone pair shown on the N atom and hydrogen bond must hit the lone pair \checkmark		ALLOW 2-D diagrams
	Hydrogen bond δ_{+} δ_{+		ALLOW two marks if water molecules are used. One awarded for a correct hydrogen bond and one for the involvement of lone pair
(i	 i) Liquid H₂O is denser than solid ✓ In solid state H₂O molecules are held apart by hydrogen bonds OR ice has an open lattice ✓ 	2	ORA ALLOW ice floats for first mark
	OR		
	H_2O has a relatively high boiling point OR melting point \checkmark		ALLOW higher melting OR boiling point than expected DO NOT ALLOW H_2O has a high melting / boiling point
	(relatively strong) hydrogen bonds need to be broken OR a lot of energy is needed to overcome hydrogen bonds OR hydrogen bonds are strong ✓		ALLOW other properties caused by hydrogen bonding not mentioned within the specification E.g. high surface tension – strong hydrogen bonds on the surface
	Total	13	